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Background: COVID pandemic lockdowns abruptly slowed
the rate at which we burned fossil fuels and released carbon
dioxide into the atmosphere; yet we cannot find any significant
reductions in the growth of carbon dioxide in the atmosphere
from our measurements. In this paper, we explore the
plausible causes and consequences of this conundrum.

Methods: Utilized a climate model, the Canadian Earth
System Model version 5 (CanESM5) to mimic the changes in
atmospheric CO2 with different amounts of reductions in fossil
fuel burning. Analyzed output from five simulations of
CanESM5, each with 30 ensemble members – a historical
ensemble, a control ensemble, & the remaining three
ensembles have: (a) COVID-like CO2, (b) 2x COVID-like CO2,
(c) 4x COVID-like CO2 emissions reductions beginning
December 2019 and ending December 2021.

Results: 
i. Each of the COVID-like emissions perturbations leads to

a forced change in the cumulative atmospheric reservoir,
lasting well beyond the emissions recovery in 2022

ii. Natural internal variability of the system as well as
carbon-concentration feedbacks obscures the detection

iii. Ocean and land carbon sinks also respond to the
emissions reduction, i.e., COVID-like emissions
reductions cause both the ocean and the land to absorb
less carbon than usual

Confidential manuscript submitted to Geophysical Research Letters

g
ro

w
th

 r
a

te
 in

  
χ
C

O
2
 (

p
p

m
 y

r-1
)

(a) Model sampled at Mauna Loa (b) Model sampled at 12 flask sites
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Figure 2. Temporal evolution of the growth rate of de-seasoned, monthly jCO2 from the CanESM5

COVID ensemble sampled at (a) Mauna Loa, and (b) the average of 12 flask sites [as in Cadule et al., 2010]

over 2020-2024. Growth rate is calculated as the di�erence in jCO2 for a given month relative to the same

month in the previous year. Thin lines show individual ensemble members, and thick lines show the ensemble

mean for each emissions scenario. Red dot and range illustrates the mean and 2f (95%) confidence interval in

February 2021 for the COVID-like emissions scenario. Subplots show the temporal correlation coe�cients of

individual ensemble members with the ensemble mean over Jan 2020 - Dec 2021 for each emissions scenario.

Small circles show the correlation coe�cients across the 30 ensemble members, large circles show the mean

correlation coe�cients, and dashes indicate 2f (95%) confidence intervals.
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terns of Gross Primary Production (GPP) and air-sea CO2 flux over 1981 to 2010. CanESM5154

tends to overestimate GPP in sub-saharan Africa and underestimate GPP in the Amazon155

rainforest, likely due to precipitation biases [Swart et al., 2019]. Historical CanESM5 air-156

sea CO2 fluxes are biased high in the North Atlantic and low in the Southern Ocean, such157

that the globally integrated air-sea CO2 flux exhibits little bias as compared to observations158

[Swart et al., 2019]. CanESM5 captures the broad features of the amplitude and phasing of159

the seasonal cycle of jCO2 measured at Barrow (BRW), Mauna Loa (MLO), and South Pole160

(SPO), though the seasonal drawdown of CO2 occurs too early at Point Barrow, and the am-161

plitude is biased high at Mauna Loa (Figure S3; the model is sampled at the approximate162

latitude, longitude, and height of the flask sample in the real world). Finally, the CanESM5163

control ensemble mean exhibits a similar growth rate in jCO2 (2.4 ppm yr�1 over 2015-164

2019; see Figure 2) as calculated from observations (2.57 ± 0.08 ppm yr�1 over 2015-2019;165

https://gml.noaa.gov/ccgg/trends/gl_gr.html). The actual growth rate derived from observa-166

tions is slightly higher due to the impact of the 2015-2016 El Ni=̃o event on the carbon cycle167

[Chatterjee et al., 2017; Liu et al., 2017].168

3 Results169

The de-trended interhemispheric gradient in observed, annual mean jCO2 exhibits179

large annual-to-decadal fluctuations over 1960-2020 that are generally replicated by the180

model but have little correlation with past periods of marked emissions reductions (Figure 1).181

The interhemispheric gradient (here expressed as the interhemispheric di�erence, Mauna182
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Figure 4. Cumulative changes in the (a) atmosphere, (b) ocean, and (c) land carbon reservoirs from Decem-

ber 2019 onwards, as simulated by the CanESM5 COVID ensemble. Colored lines show the anomaly in the

ensemble-mean reservoir size relative to the control ensemble mean (SSP2-4.5), and gray shading indicates

the spread in the cumulative reservoir anomaly across the control ensemble. Dashed lines in (a) show the

cumulative changes in atmospheric carbon due to anomalous emissions alone.
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Sutton, 2009]. As a result, the ensemble-mean February 2021 COVID-like jCO2 growth rate217

is significantly di�erent from the control ensemble mean in the average of the 12 flask sites,218

but not at Mauna Loa (Figure 2; significance calculated using a 2f (95%) confidence inter-219

val across the COVID-like ensemble members). If we wish to detect a signal of the COVID-220

driven emissions reduction in the real-world growth rate of jCO2, our modeling study sug-221

gests that we are most likely to find it in early 2021 by averaging across measurements col-222

lected in the global flask network.223

Is it possible to detect the change in the de-seasoned, monthly jCO2 growth rate from229

flask observations in the real world, where we have only a single “ensemble member”? To230

answer this question, we turn to a formal statistical detection framework, where we use the231

unique ensemble mean “fingerprint” of the growth rate in the model sampled at flask sites232

(i.e., the V-shaped dip and recovery in the ensemble-mean growth rate over January 2020 to233

December 2021 in Figure 2) and quantify the correlation of each individual ensemble mem-234

ber with this fingerprint for each emissions scenario. This statistical detection approach for235

hypothetical observations (we haven’t yet measured the growth rate in December 2021, for236

example) is identical to the one outlined in Lovenduski et al. [2021] and mimics the approach237

for the detection of a climate change signal in real-world observations [Bindo� and Stott,238

2013]. The resulting correlation coe�cients are shown in the subplots of Figure 2, where239

small circles show the set of 30 Pearson’s correlation coe�cients (A) with the ensemble mean240

fingerprint across the 30 ensemble members, and large circles show the mean correlation241

coe�cients [calculated using a Fisher’s I transform; see Lovenduski et al., 2021] for each242

COVID-like emissions scenario. For the model sampled at Mauna Loa, the mean correlation243

coe�cient for the COVID-like ensemble is 0.4 with a wide range; stronger emissions reduc-244

tions increase the mean correlation coe�cient and narrow the range (subplot in Figure 2a),245

–7–

Significance
If not for the slowing ocean and land
carbon sinks, the COVID-like emissions
reduction signal in the atmospheric carbon
reservoir may have been detectable
above the noise of internal variability for
at least 2 - 3 consecutive years.



Notes

Top Figure: Temporal evolution of the growth rate of de-seasoned, monthly 𝜒CO2 from the CanESM5
COVID ensemble sampled at (a) Mauna Loa, and (b) the average of 12 flask sites over 2020-2024.
Growth rate is calculated as the difference in 𝜒CO2 for a given month relative to the same month in
the previous year. Thin lines show individual ensemble members, and thick lines show the ensemble
mean for each emissions scenario. Red dot and range illustrates the mean and 2𝜎 (95%) confidence
interval in February 2021 for the COVID-like emissions scenario. Subplots show the temporal
correlation coefficients of individual ensemble members with the ensemble mean over Jan 2020 - Dec
2021 for each emissions scenario. Small circles show the correlation coefficients across the 30
ensemble members, large circles show the mean correlation coefficients, and dashes indicate 2𝜎
(95%) confidence intervals.
Bottom Figure: Cumulative changes in the (a) atmosphere, (b) ocean, and (c) land carbon reservoirs
from December 2019 onwards, as simulated by the CanESM5 COVID ensemble. Colored lines show
the anomaly in the ensemble-mean reservoir size relative to the control ensemble mean (SSP2-4.5),
and gray shading indicates the spread in the cumulative reservoir anomaly across the control
ensemble. Dashed lines in (a) show the cumulative changes in atmospheric carbon due to anomalous
emissions alone.

Citation: Lovenduski, N. S., Chatterjee, A., Swart, N. C., Fyfe, J. C., Keeling, R. F., & Schimel, D. 
(2021). On the detection of COVID-driven changes in atmospheric carbon dioxide. Geophysical 
Research Letters, 48, e2021GL095396
DOI:10.1029/2021GL095396
Award Information:
This research was supported by the NASA Carbon Monitoring System (NNH18ZDA001N-CMS) under 
NASA Award number 80NSSC20K0006. 


